import pandas
help(pandas.read_excel)
Help on function read_excel in module pandas.io.excel._base:
read_excel(io, sheet_name: 'str | int | list[IntStrT] | None' = 0, *, header: 'int | Sequence[int] | None' = 0, names: 'list[str] | None' = None, index_col: 'int | Sequence[int] | None' = None, usecols: 'int | str | Sequence[int] | Sequence[str] | Callable[[str], bool] | None' = None, squeeze: 'bool | None' = None, dtype: 'DtypeArg | None' = None, engine: "Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb'] | None" = None, converters: 'dict[str, Callable] | dict[int, Callable] | None' = None, true_values: 'Iterable[Hashable] | None' = None, false_values: 'Iterable[Hashable] | None' = None, skiprows: 'Sequence[int] | int | Callable[[int], object] | None' = None, nrows: 'int | None' = None, na_values=None, keep_default_na: 'bool' = True, na_filter: 'bool' = True, verbose: 'bool' = False, parse_dates: 'list | dict | bool' = False, date_parser: 'Callable | None' = None, thousands: 'str | None' = None, decimal: 'str' = '.', comment: 'str | None' = None, skipfooter: 'int' = 0, convert_float: 'bool | None' = None, mangle_dupe_cols: 'bool' = True, storage_options: 'StorageOptions' = None) -> 'DataFrame | dict[IntStrT, DataFrame]'
Read an Excel file into a pandas DataFrame.
Supports `xls`, `xlsx`, `xlsm`, `xlsb`, `odf`, `ods` and `odt` file extensions
read from a local filesystem or URL. Supports an option to read
a single sheet or a list of sheets.
Parameters
----------
io : str, bytes, ExcelFile, xlrd.Book, path object, or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be: ``file://localhost/path/to/table.xlsx``.
If you want to pass in a path object, pandas accepts any ``os.PathLike``.
By file-like object, we refer to objects with a ``read()`` method,
such as a file handle (e.g. via builtin ``open`` function)
or ``StringIO``.
sheet_name : str, int, list, or None, default 0
Strings are used for sheet names. Integers are used in zero-indexed
sheet positions (chart sheets do not count as a sheet position).
Lists of strings/integers are used to request multiple sheets.
Specify None to get all worksheets.
Available cases:
* Defaults to ``0``: 1st sheet as a `DataFrame`
* ``1``: 2nd sheet as a `DataFrame`
* ``"Sheet1"``: Load sheet with name "Sheet1"
* ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5"
as a dict of `DataFrame`
* None: All worksheets.
header : int, list of int, default 0
Row (0-indexed) to use for the column labels of the parsed
DataFrame. If a list of integers is passed those row positions will
be combined into a ``MultiIndex``. Use None if there is no header.
names : array-like, default None
List of column names to use. If file contains no header row,
then you should explicitly pass header=None.
index_col : int, list of int, default None
Column (0-indexed) to use as the row labels of the DataFrame.
Pass None if there is no such column. If a list is passed,
those columns will be combined into a ``MultiIndex``. If a
subset of data is selected with ``usecols``, index_col
is based on the subset.
Missing values will be forward filled to allow roundtripping with
``to_excel`` for ``merged_cells=True``. To avoid forward filling the
missing values use ``set_index`` after reading the data instead of
``index_col``.
usecols : str, list-like, or callable, default None
* If None, then parse all columns.
* If str, then indicates comma separated list of Excel column letters
and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
both sides.
* If list of int, then indicates list of column numbers to be parsed
(0-indexed).
* If list of string, then indicates list of column names to be parsed.
* If callable, then evaluate each column name against it and parse the
column if the callable returns ``True``.
Returns a subset of the columns according to behavior above.
squeeze : bool, default False
If the parsed data only contains one column then return a Series.
.. deprecated:: 1.4.0
Append ``.squeeze("columns")`` to the call to ``read_excel`` to squeeze
the data.
dtype : Type name or dict of column -> type, default None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
Use `object` to preserve data as stored in Excel and not interpret dtype.
If converters are specified, they will be applied INSTEAD
of dtype conversion.
engine : str, default None
If io is not a buffer or path, this must be set to identify io.
Supported engines: "xlrd", "openpyxl", "odf", "pyxlsb".
Engine compatibility :
- "xlrd" supports old-style Excel files (.xls).
- "openpyxl" supports newer Excel file formats.
- "odf" supports OpenDocument file formats (.odf, .ods, .odt).
- "pyxlsb" supports Binary Excel files.
.. versionchanged:: 1.2.0
The engine `xlrd <https://xlrd.readthedocs.io/en/latest/>`_
now only supports old-style ``.xls`` files.
When ``engine=None``, the following logic will be
used to determine the engine:
- If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
then `odf <https://pypi.org/project/odfpy/>`_ will be used.
- Otherwise if ``path_or_buffer`` is an xls format,
``xlrd`` will be used.
- Otherwise if ``path_or_buffer`` is in xlsb format,
``pyxlsb`` will be used.
.. versionadded:: 1.3.0
- Otherwise ``openpyxl`` will be used.
.. versionchanged:: 1.3.0
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the Excel cell content, and return the transformed
content.
true_values : list, default None
Values to consider as True.
false_values : list, default None
Values to consider as False.
skiprows : list-like, int, or callable, optional
Line numbers to skip (0-indexed) or number of lines to skip (int) at the
start of the file. If callable, the callable function will be evaluated
against the row indices, returning True if the row should be skipped and
False otherwise. An example of a valid callable argument would be ``lambda
x: x in [0, 2]``.
nrows : int, default None
Number of rows to parse.
na_values : scalar, str, list-like, or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted
as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
'1.#IND', '1.#QNAN', '<NA>', 'N/A', 'NA', 'NULL', 'NaN', 'n/a',
'nan', 'null'.
keep_default_na : bool, default True
Whether or not to include the default NaN values when parsing the data.
Depending on whether `na_values` is passed in, the behavior is as follows:
* If `keep_default_na` is True, and `na_values` are specified, `na_values`
is appended to the default NaN values used for parsing.
* If `keep_default_na` is True, and `na_values` are not specified, only
the default NaN values are used for parsing.
* If `keep_default_na` is False, and `na_values` are specified, only
the NaN values specified `na_values` are used for parsing.
* If `keep_default_na` is False, and `na_values` are not specified, no
strings will be parsed as NaN.
Note that if `na_filter` is passed in as False, the `keep_default_na` and
`na_values` parameters will be ignored.
na_filter : bool, default True
Detect missing value markers (empty strings and the value of na_values). In
data without any NAs, passing na_filter=False can improve the performance
of reading a large file.
verbose : bool, default False
Indicate number of NA values placed in non-numeric columns.
parse_dates : bool, list-like, or dict, default False
The behavior is as follows:
* bool. If True -> try parsing the index.
* list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
each as a separate date column.
* list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
a single date column.
* dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call
result 'foo'
If a column or index contains an unparsable date, the entire column or
index will be returned unaltered as an object data type. If you don`t want to
parse some cells as date just change their type in Excel to "Text".
For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``.
Note: A fast-path exists for iso8601-formatted dates.
date_parser : function, optional
Function to use for converting a sequence of string columns to an array of
datetime instances. The default uses ``dateutil.parser.parser`` to do the
conversion. Pandas will try to call `date_parser` in three different ways,
advancing to the next if an exception occurs: 1) Pass one or more arrays
(as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
string values from the columns defined by `parse_dates` into a single array
and pass that; and 3) call `date_parser` once for each row using one or
more strings (corresponding to the columns defined by `parse_dates`) as
arguments.
thousands : str, default None
Thousands separator for parsing string columns to numeric. Note that
this parameter is only necessary for columns stored as TEXT in Excel,
any numeric columns will automatically be parsed, regardless of display
format.
decimal : str, default '.'
Character to recognize as decimal point for parsing string columns to numeric.
Note that this parameter is only necessary for columns stored as TEXT in Excel,
any numeric columns will automatically be parsed, regardless of display
format.(e.g. use ',' for European data).
.. versionadded:: 1.4.0
comment : str, default None
Comments out remainder of line. Pass a character or characters to this
argument to indicate comments in the input file. Any data between the
comment string and the end of the current line is ignored.
skipfooter : int, default 0
Rows at the end to skip (0-indexed).
convert_float : bool, default True
Convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
data will be read in as floats: Excel stores all numbers as floats
internally.
.. deprecated:: 1.3.0
convert_float will be removed in a future version
mangle_dupe_cols : bool, default True
Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than
'X'...'X'. Passing in False will cause data to be overwritten if there
are duplicate names in the columns.
.. deprecated:: 1.5.0
Not implemented, and a new argument to specify the pattern for the
names of duplicated columns will be added instead
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
.. versionadded:: 1.2.0
Returns
-------
DataFrame or dict of DataFrames
DataFrame from the passed in Excel file. See notes in sheet_name
argument for more information on when a dict of DataFrames is returned.
See Also
--------
DataFrame.to_excel : Write DataFrame to an Excel file.
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
Examples
--------
The file can be read using the file name as string or an open file object:
>>> pd.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP
Name Value
0 string1 1
1 string2 2
2 #Comment 3
>>> pd.read_excel(open('tmp.xlsx', 'rb'),
... sheet_name='Sheet3') # doctest: +SKIP
Unnamed: 0 Name Value
0 0 string1 1
1 1 string2 2
2 2 #Comment 3
Index and header can be specified via the `index_col` and `header` arguments
>>> pd.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP
0 1 2
0 NaN Name Value
1 0.0 string1 1
2 1.0 string2 2
3 2.0 #Comment 3
Column types are inferred but can be explicitly specified
>>> pd.read_excel('tmp.xlsx', index_col=0,
... dtype={'Name': str, 'Value': float}) # doctest: +SKIP
Name Value
0 string1 1.0
1 string2 2.0
2 #Comment 3.0
True, False, and NA values, and thousands separators have defaults,
but can be explicitly specified, too. Supply the values you would like
as strings or lists of strings!
>>> pd.read_excel('tmp.xlsx', index_col=0,
... na_values=['string1', 'string2']) # doctest: +SKIP
Name Value
0 NaN 1
1 NaN 2
2 #Comment 3
Comment lines in the excel input file can be skipped using the `comment` kwarg
>>> pd.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP
Name Value
0 string1 1.0
1 string2 2.0
2 None NaN
perfiles = pandas.read_excel("CrossPlane_100x100.xlsx", sheet_name=None)
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
Cell In[3], line 1
----> 1 perfiles = pandas.read_excel("CrossPlane_100x100.xlsx", sheet_name=None)
File /opt/miniconda3/lib/python3.9/site-packages/pandas/util/_decorators.py:211, in deprecate_kwarg.<locals>._deprecate_kwarg.<locals>.wrapper(*args, **kwargs)
209 else:
210 kwargs[new_arg_name] = new_arg_value
--> 211 return func(*args, **kwargs)
File /opt/miniconda3/lib/python3.9/site-packages/pandas/util/_decorators.py:331, in deprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
325 if len(args) > num_allow_args:
326 warnings.warn(
327 msg.format(arguments=_format_argument_list(allow_args)),
328 FutureWarning,
329 stacklevel=find_stack_level(),
330 )
--> 331 return func(*args, **kwargs)
File /opt/miniconda3/lib/python3.9/site-packages/pandas/io/excel/_base.py:482, in read_excel(io, sheet_name, header, names, index_col, usecols, squeeze, dtype, engine, converters, true_values, false_values, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, parse_dates, date_parser, thousands, decimal, comment, skipfooter, convert_float, mangle_dupe_cols, storage_options)
480 if not isinstance(io, ExcelFile):
481 should_close = True
--> 482 io = ExcelFile(io, storage_options=storage_options, engine=engine)
483 elif engine and engine != io.engine:
484 raise ValueError(
485 "Engine should not be specified when passing "
486 "an ExcelFile - ExcelFile already has the engine set"
487 )
File /opt/miniconda3/lib/python3.9/site-packages/pandas/io/excel/_base.py:1652, in ExcelFile.__init__(self, path_or_buffer, engine, storage_options)
1650 ext = "xls"
1651 else:
-> 1652 ext = inspect_excel_format(
1653 content_or_path=path_or_buffer, storage_options=storage_options
1654 )
1655 if ext is None:
1656 raise ValueError(
1657 "Excel file format cannot be determined, you must specify "
1658 "an engine manually."
1659 )
File /opt/miniconda3/lib/python3.9/site-packages/pandas/io/excel/_base.py:1525, in inspect_excel_format(content_or_path, storage_options)
1522 if isinstance(content_or_path, bytes):
1523 content_or_path = BytesIO(content_or_path)
-> 1525 with get_handle(
1526 content_or_path, "rb", storage_options=storage_options, is_text=False
1527 ) as handle:
1528 stream = handle.handle
1529 stream.seek(0)
File /opt/miniconda3/lib/python3.9/site-packages/pandas/io/common.py:865, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
856 handle = open(
857 handle,
858 ioargs.mode,
(...)
861 newline="",
862 )
863 else:
864 # Binary mode
--> 865 handle = open(handle, ioargs.mode)
866 handles.append(handle)
868 # Convert BytesIO or file objects passed with an encoding
FileNotFoundError: [Errno 2] No such file or directory: 'CrossPlane_100x100.xlsx'
print(type(perfiles))
<class 'dict'>
Con keys()
encuentro los nombres de las hojas del archivo excel
perfiles.keys()
dict_keys(['Depth = 16 mm', 'Depth = 50 mm', 'Depth = 100 mm', 'Depth = 200 mm', 'Depth = 300 mm'])
perfiles50mm = perfiles['Depth = 50 mm']
perfiles50mm.head()
Unnamed: 0 | Prof | Dosis | Unnamed: 3 | Unnamed: 4 | Unnamed: 5 | Unnamed: 6 | Unnamed: 7 | Unnamed: 8 | Unnamed: 9 | ... | Unnamed: 16 | Unnamed: 17 | Unnamed: 18 | Unnamed: 19 | Unnamed: 20 | Unnamed: 21 | Unnamed: 22 | Unnamed: 23 | Unnamed: 24 | Unnamed: 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | NaN | -150 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1 | NaN | -147.5 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2 | NaN | -145 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
3 | NaN | -142.5 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
4 | NaN | -140 | 1.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
5 rows × 26 columns
perfiles50mm['Prof']
0 -150
1 -147.5
2 -145
3 -142.5
4 -140
...
116 140
117 142.5
118 145
119 147.5
120 150
Name: Prof, Length: 121, dtype: object
perfiles50mm['Dosis']
0 0.9
1 0.9
2 0.9
3 0.9
4 1.0
...
116 1.0
117 0.9
118 0.9
119 0.9
120 0.8
Name: Dosis, Length: 121, dtype: float64
perfiles['Depth = 50 mm']
Unnamed: 0 | Prof | Dosis | Unnamed: 3 | Unnamed: 4 | Unnamed: 5 | Unnamed: 6 | Unnamed: 7 | Unnamed: 8 | Unnamed: 9 | ... | Unnamed: 16 | Unnamed: 17 | Unnamed: 18 | Unnamed: 19 | Unnamed: 20 | Unnamed: 21 | Unnamed: 22 | Unnamed: 23 | Unnamed: 24 | Unnamed: 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | NaN | -150 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1 | NaN | -147.5 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2 | NaN | -145 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
3 | NaN | -142.5 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
4 | NaN | -140 | 1.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
116 | NaN | 140 | 1.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
117 | NaN | 142.5 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
118 | NaN | 145 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
119 | NaN | 147.5 | 0.9 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
120 | NaN | 150 | 0.8 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
121 rows × 26 columns
perfiles100mm = pandas.read_excel("CrossPlane_100x100.xlsx", sheet_name = 'Depth = 100 mm')
perfiles100mm.head()
Unnamed: 0 | Prof | Dosis | Unnamed: 3 | Unnamed: 4 | Unnamed: 5 | Unnamed: 6 | Unnamed: 7 | Unnamed: 8 | Unnamed: 9 | ... | Unnamed: 16 | Unnamed: 17 | Unnamed: 18 | Unnamed: 19 | Unnamed: 20 | Unnamed: 21 | Unnamed: 22 | Unnamed: 23 | Unnamed: 24 | Unnamed: 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | NaN | -150 | 1.3 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1 | NaN | -147.5 | 1.3 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2 | NaN | -145 | 1.4 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
3 | NaN | -142.5 | 1.4 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
4 | NaN | -140 | 1.5 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
5 rows × 26 columns